From 290d55c4353a7374da14d67bc9ab3d33c236fa95 Mon Sep 17 00:00:00 2001
From: Marcin Chrzanowski <m@m-chrzan.xyz>
Date: Sat, 1 May 2021 15:20:36 +0200
Subject: Implement configurable experiment runner

---
 src/experiment.py   |  68 ++++++++++++++++++++++++++++++++++
 src/net_types.py    |   5 +++
 src/parse_config.py | 104 ++++++++++++++++++++++++++++++++++++++++++++++++++++
 src/run.py          |  14 +++++++
 src/runner.py       |  77 ++++++++++++++++++++++++++++++++++++++
 5 files changed, 268 insertions(+)
 create mode 100644 src/experiment.py
 create mode 100644 src/net_types.py
 create mode 100644 src/parse_config.py
 create mode 100644 src/run.py
 create mode 100644 src/runner.py

diff --git a/src/experiment.py b/src/experiment.py
new file mode 100644
index 0000000..dd2033c
--- /dev/null
+++ b/src/experiment.py
@@ -0,0 +1,68 @@
+import subprocess
+import os
+import time
+
+import pandas as pd
+import matplotlib.pyplot as plt
+
+from runner import Runner
+
+class Experiment:
+    def __init__(self, file):
+        self.make_dir()
+        self.copy_config(file)
+        self.metrics = ExperimentMetrics()
+        self.runner = Runner(file, self.metrics)
+
+    def run(self):
+        self.runner.run()
+
+    def save_results(self):
+        data = self.metrics.get_dataframe()
+        data.to_csv(self.dir_path('metrics.csv'))
+
+        plt.plot(data['train_losses'], label='train loss')
+        plt.plot(data['test_losses'], label='test loss')
+        plt.xlabel('Epoch')
+        plt.ylabel('Loss')
+        plt.legend()
+        plt.savefig(self.dir_path('losses.png'))
+        plt.clf()
+
+        plt.plot(data['test_accuracies'], label='test accuracy')
+        plt.xlabel('Epoch')
+        plt.ylabel('% correct')
+        plt.legend()
+        plt.savefig(self.dir_path('accuracies.png'))
+
+    def dir_path(self, file):
+        return '{}/{}'.format(self.dirname, file)
+
+    def make_dir(self):
+        time_string = time.strftime('%Y%m%d%H%M%S')
+        dirname = 'outputs/{}'.format(time_string)
+        self.dirname = dirname
+        os.mkdir(dirname)
+
+    def copy_config(self, file):
+        subprocess.run(['cp', file, '{}/config.yaml'.format(self.dirname)])
+
+class ExperimentMetrics:
+    def __init__(self):
+        self.train_losses = []
+        self.test_losses = []
+        self.test_accuracies = []
+
+    def add_train_loss(self, loss):
+        self.train_losses.append(loss)
+
+    def add_test_metrics(self, loss, accuracy):
+        self.test_losses.append(loss)
+        self.test_accuracies.append(accuracy)
+
+    def get_dataframe(self):
+        return pd.DataFrame({
+            'train_losses': self.train_losses,
+            'test_losses': self.test_losses,
+            'test_accuracies': self.test_accuracies,
+            })
diff --git a/src/net_types.py b/src/net_types.py
new file mode 100644
index 0000000..bb52d50
--- /dev/null
+++ b/src/net_types.py
@@ -0,0 +1,5 @@
+import classification
+
+types = {
+    'classification': classification
+}
diff --git a/src/parse_config.py b/src/parse_config.py
new file mode 100644
index 0000000..91b4a41
--- /dev/null
+++ b/src/parse_config.py
@@ -0,0 +1,104 @@
+import yaml
+import torch
+
+from config import ConvConfig, LinearConfig
+import net_types
+
+def get(dictionary, key):
+    return dictionary.get(key)
+
+def parse_file(file):
+    with open(file) as file:
+        return parse(yaml.safe_load(file))
+
+def parse_convolution(config):
+    max_pool = get(config, 'max_pool') or False
+    size = get(config, 'size') or 3
+    stride = get(config, 'stride') or 1
+    padding = get(config, 'padding') or 1
+    return ConvConfig(
+        config['in_channels'],
+        config['out_channels'],
+        max_pool,
+        size,
+        stride,
+        padding
+    )
+
+def parse_convolutions(config):
+    convolutions = []
+    for convolution_config in config:
+        convolutions.append(parse_convolution(convolution_config))
+    return convolutions
+
+def parse_linear(config):
+    return LinearConfig(config['in_features'], config['out_features'])
+
+def parse_linears(config):
+    linears = []
+    for linear_config in config:
+        linears.append(parse_linear(linear_config))
+    return linears
+
+# TODO: temporary placeholder
+def foo(x):
+    return x
+
+def parse_type(typ):
+    if typ == 'classification':
+        return 6, torch.sigmoid
+    elif typ == 'counting-small':
+        return 60, foo
+    else:
+        raise Exception('unknown network type: {}'.format(typ))
+
+def parse_net(config):
+    convolutions = parse_convolutions(config['convolutions'])
+    linears = parse_linears(config['linears'])
+    batch_norm = get(config, 'batch_norm') or False
+    dropout = get(config, 'dropout') or False
+    return {
+        'convolutions': convolutions,
+        'linears': linears,
+        'batch_norm': batch_norm,
+        'dropout': dropout
+    }
+
+def parse_type(typ):
+    net_type = net_types.types[typ]
+    return (
+        net_type.outputs,
+        net_type.finalizer,
+        net_type.target_transform,
+        net_type.loss_function,
+        net_type.count_correct
+    )
+
+def parse_augmentations(config):
+    augmentations = []
+    for augmentation_config in config:
+        rotation = get(augmentation_config, 'rotation') or 0
+        vflip = get(augmentation_config, 'vflip') or False
+        hflip = get(augmentation_config, 'hflip') or False
+        augmentations.append((rotation, vflip, hflip))
+    return augmentations
+
+def parse(config):
+    net = parse_net(config)
+    outputs, finalizer, target_transform, loss_function, count_correct = parse_type(config['type'])
+    net['outputs'] = outputs
+    net['finalizer'] = finalizer
+    lr = config['lr']
+    epochs = config['epochs']
+    batch_size = config['batch_size']
+    augmentations = parse_augmentations(get(config, 'augmentations') or [])
+    return (
+        net,
+        lr,
+        epochs,
+        batch_size,
+        augmentations,
+        target_transform,
+        loss_function,
+        count_correct
+    )
diff --git a/src/run.py b/src/run.py
new file mode 100644
index 0000000..db25e60
--- /dev/null
+++ b/src/run.py
@@ -0,0 +1,14 @@
+import sys
+
+from experiment import Experiment
+
+file = None
+if len(sys.argv) < 2:
+    print('Provide YAML configuration file as argument')
+    exit(1)
+
+file = sys.argv[1]
+
+experiment = Experiment(file)
+experiment.run()
+experiment.save_results()
diff --git a/src/runner.py b/src/runner.py
new file mode 100644
index 0000000..511f9a5
--- /dev/null
+++ b/src/runner.py
@@ -0,0 +1,77 @@
+import torch
+
+from parse_config import parse_file
+import data
+from net import Net
+
+class Runner:
+    def __init__(self, file, metrics):
+        self.metrics = metrics
+        self.setup(file)
+
+    def setup(self, file):
+        (
+            net_config,
+            lr,
+            self.epochs,
+            batch_size,
+            augmentations,
+            target_transform,
+            self.loss_function,
+            self.count_correct
+        ) = parse_file(file)
+
+        self.train_loader, self.test_loader = data.get_loaders(
+                augmentations,
+                target_transform,
+                batch_size)
+
+        self.net = Net(**net_config)
+        self.optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
+
+    def run(self):
+        for epoch in range(self.epochs):
+            self.train_step()
+            self.test_step()
+
+    def train_step(self):
+        """
+        Performs one epoch of training.
+        """
+        self.net.train()
+        total_loss = 0
+        number_batches = 0
+        for batch_idx, (data, target) in enumerate(self.train_loader):
+            number_batches += 1
+            self.optimizer.zero_grad()
+            output = self.net(data)
+            loss = self.loss_function(output, target)
+            loss.backward()
+            self.optimizer.step()
+            total_loss += loss.detach()
+            if batch_idx % 10 == 0:
+                print('Training: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
+                    batch_idx * len(data), len(self.train_loader.dataset),
+                    100. * batch_idx / len(self.train_loader), loss.item()))
+        self.metrics.add_train_loss(total_loss/number_batches)
+
+    def test_step(self):
+        self.net.eval()
+        test_loss = 0
+        correct = 0
+        number_batches = 0
+        with torch.no_grad():
+            for data, target in self.test_loader:
+                number_batches += 1
+                output = self.net(data)
+                test_loss += self.loss_function(output, target)
+                correct += self.count_correct(output, target)
+
+        test_loss /= number_batches
+        accuracy = correct / len(self.test_loader.dataset)
+
+        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
+            test_loss, correct, len(self.test_loader.dataset), 100. * accuracy
+            ))
+
+        self.metrics.add_test_metrics(test_loss, accuracy)
-- 
cgit v1.2.3