From f210eee79c48663abaf5ab06ff42e8f6b1b3762b Mon Sep 17 00:00:00 2001
From: Marcin Chrzanowski <mc370754@students.mimuw.edu.pl>
Date: Sat, 11 Dec 2021 14:05:10 +0100
Subject: Move bullet point out into paragraph

---
 mgr.tex | 7 +++----
 1 file changed, 3 insertions(+), 4 deletions(-)

diff --git a/mgr.tex b/mgr.tex
index af3cdb2..0c7054b 100644
--- a/mgr.tex
+++ b/mgr.tex
@@ -1003,12 +1003,11 @@ automaton, allowing us to use our result from Chapter \ref{branchinfix}. To show
 this formally, consider the alphabet $\Sigma' := Q \times \Sigma \times Q \times
 \{ \leftsymbol, \rightsymbol \}$. A word over this alphabet can be used to
 represent a subtree with a hole. A subtree with hole as described above would be
-represented by word $a_0 a_1 \ldots a_p$ where
+represented by word $a_0 a_1 \ldots a_p$ with each $a_i$ being a quadruple
+from $\Sigma'$, $\langle p_i, b_i, q_i, d_i \rangle$ (with $p_i, q_i \in Q$,
+$b_i \in \Sigma$, $d_i$ either $\leftsymbol$ or $\rightsymbol$) where:
 
 \begin{itemize}
-    \item Each $a_i$ is a quadruple from $\Sigma'$, $\langle p_i, b_i, q_i, d_i
-        \rangle$ (with $p_i, q_i \in Q$, $b_i \in \Sigma$, $d_i$ either
-        $\leftsymbol$ or $\rightsymbol$).
     \item $b_i$ is the original label of $x_i$.
     \item $p_i$ and $q_i$ are the states of $x_i$'s children in the precomputed
         run of $A$ over $T$.
-- 
cgit v1.2.3