From 465f95de2891eef5f6bd63e646d74adaf9fe9b09 Mon Sep 17 00:00:00 2001 From: Marcin Chrzanowski Date: Sun, 18 Dec 2022 15:31:21 +0100 Subject: Shorten sections --- presentation/presentation.md | 39 +++++++++++++-------------------------- 1 file changed, 13 insertions(+), 26 deletions(-) (limited to 'presentation') diff --git a/presentation/presentation.md b/presentation/presentation.md index ec491e9..9652d3d 100644 --- a/presentation/presentation.md +++ b/presentation/presentation.md @@ -5,17 +5,17 @@ ## Question Answering * Fix a function $f : \mathcal{S} \times \mathcal{Q} \to \mathcal{A}$ -* A *preprocessing* algorithm that on input $S \in \mathcal{S}$ outputs an - indexing structure $S'$ (doesn't need to be in $\mathcal{S}$). -* An *answering* algorithm that on input $Q \in \mathcal{Q}$, together with - $S'$, outputs $f(S, Q)$. +* *preprocessing*: on input $S \in \mathcal{S}$ output an indexing structure + $S'$. +* *answering*: on input $Q \in \mathcal{Q}$, $S'$ outputs $f(S, Q)$. ## Question Answering - Time Complexity * Let $n = |S|$, $m = |Q|$. -* If the preprocessing algorithm works in time $f(n)$ and the answering - algorithm works in time $g(n, m)$, we notate the full algorithm's time - complexity as $\langle f(n), g(n, m) \rangle$. +* Preprocessing algorithm works in time $f(n)$ +* Answering algorithm works in time $g(n, m)$ +* Notate the full algorithm's time complexity as $\langle f(n), g(n, m) + \rangle$. ## Example: LCA @@ -46,28 +46,15 @@ singletons. # Prior Work -## Naïve Solutions - Model Checking - -* Introduce unary relations $U_i$. -* For question $\vec{W}$, label elements of $W_i$ with $U_i$. -* If we can answer MSO model checking on trees in time $f(n)$, we can answer - questions in $O(f(n))$. - -## Naïve Solution - Courcelle +## Reduce to Model Checking * Courcelle: MSO model checking over structures of bounded treewidth is $O_{\varphi}(n)$. -* So we can solve MSO query answering in $\langle O(1), O_{\varphi}(n) \rangle$. - -## Naïve Solution - Amarilli et al. - -* Amarilli et al.: algorithm that preprocess a tree in time $O_{\varphi}(n)$, - then allows relabeling in time $O_{\varphi}(\log{n})$, answers model checking - in $O(1)$ for the updated tree. -* Preprocess tree according to Amarilli. -* For a question $\vec{W}$, run an update for each vertex in $\vec{W}$, get the - answer. -* So an $\langle O_{\varphi}(n), O_{\varphi}(m \log{n}) \rangle$ solution. + * MSO query answering in $\langle O(1), O_{\varphi}(n) \rangle$. +* Amarilli et al.: $O_{\varphi}(n)$ preprocessing, $O_{\varphi}(\log{n})$ + relabeling. + * MSO query answering in $\langle O_{\varphi}(n), O_{\varphi}(m \log{n}) + \rangle$. ## Kazana -- cgit v1.2.3