1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
import os
import numpy as np
import pandas as pd
import torch
import torchvision
import torchvision.transforms.functional as F
class ShapesData(torch.utils.data.Dataset):
def __init__(self, train, transform=None, target_transform=None):
self.train = train
self.transform = transform
self.target_transform = target_transform
labels_file = './data/labels.csv'
self.labels = pd.read_csv(labels_file)
def __len__(self):
if self.train:
return 9000
else:
return 1000
def get_index(self, i):
if self.train:
assert i < 9000, 'Train dataset index out of bounds'
return i
else:
assert i < 1000, 'Test dataset index out of bounds'
return i + 9000
def __getitem__(self, i):
i = self.get_index(i)
filename = os.path.join('./data', self.labels.loc[i, 'name'])
image = torchvision.io.read_image(filename)
# Images as we read them have four channels, each with values in (0,
# 255) Take the first channel and rescale to (-1, 1)
image = (image[0] / 255 - 0.5) * 2
if self.transform:
image = self.transform(image)
labels = self.labels.loc[i, 'squares':'left']
labels = torch.tensor(labels.values.astype(np.float32))
if self.target_transform:
labels = self.target_transform(labels)
sample = [
image,
labels
]
return sample
def rotation_transform(image, rotation):
return F.rotate(image.unsqueeze(0), angle=(rotation * 90))
def rotation_target_transform(labels, rotation):
labels[2:6] = labels[2:6][[*range(rotation, 4), *range(0, rotation)]]
return labels
def make_rotation(rotation):
return torchvision.transforms.Lambda(
lambda image: rotation_transform(image, rotation)
), torchvision.transforms.Lambda(
lambda labels: rotation_target_transform(labels, rotation)
)
def vertical_flip_target_transform(labels):
labels[[2, 4]] = labels[[4, 2]]
return labels
def make_vertical_flip():
return torchvision.transforms.Lambda(
F.vflip
), torchvision.transforms.Lambda(
vertical_flip_target_transform
)
def horizontal_flip_target_transform(labels):
labels[[3, 5]] = labels[[5, 3]]
return labels
def make_horizontal_flip():
return torchvision.transforms.Lambda(
F.hflip
), torchvision.transforms.Lambda(
horizontal_flip_target_transform
)
def make_transforms(rotation, flip_vertical, flip_horizontal):
"""
Returns an image and label transform for rotating and/or flipping images.
- rotation: 0-3, indicating number of counter clockwise 90° turns
- flip_vertical, flip_horizontal: booleans
"""
transforms = []
target_transforms = []
if rotation > 0:
rotation, target_rotation = make_rotation(rotation)
transforms.append(rotation)
target_transforms.append(target_rotation)
if flip_vertical:
flip, target_flip = make_vertical_flip()
transforms.append(flip)
target_transforms.append(target_flip)
if flip_horizontal:
flip, target_flip = make_horizontal_flip()
transforms.append(flip)
target_transforms.append(target_flip)
if transforms:
# Transformations add another dimension, which screws up the net
transforms.append(torchvision.transforms.Lambda(lambda image:
image.squeeze()
))
return (torchvision.transforms.Compose(transforms),
torchvision.transforms.Compose(target_transforms))
def make_augmented_data(augmentations, after_target_transform=None):
"""
Returns concatanated ShapesData train datasets, each modified by an
augmentation.
- augmentations: list of triples (rotation, vertical flip, horizontal flip).
- after_target_transform: an additional transform to apply after the
augmentation ones.
"""
datasets = []
for rotation, vertical_flip, horizontal_flip in augmentations:
transform, target_transform = make_transforms(
rotation, vertical_flip, horizontal_flip
)
if after_target_transform:
target_transform = torchvision.transforms.Compose([
target_transform,
after_target_transform
])
dataset = ShapesData(
True, transform=transform, target_transform=target_transform
)
datasets.append(dataset)
return torch.utils.data.ConcatDataset(datasets)
def get_loaders(augmentations, target_transform, train_batch_size):
train_data = make_augmented_data(augmentations, after_target_transform=target_transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=train_batch_size, shuffle=True)
test_data = ShapesData(False, target_transform=target_transform)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=1000, shuffle=False)
return train_loader, test_loader
|