diff options
Diffstat (limited to 'train')
-rw-r--r-- | train/train.py | 97 |
1 files changed, 55 insertions, 42 deletions
diff --git a/train/train.py b/train/train.py index a88129a..1d8f26e 100644 --- a/train/train.py +++ b/train/train.py @@ -7,45 +7,58 @@ from torch import optim from data.generate import get_single_example from data.testset import get_testset -def train_model(model, lr, num_steps, batch_size, device='cpu'): - model.to(device) - - start_time = time() - accs = [] - - loss_function = nn.CrossEntropyLoss() - optimizer = optim.Adam(model.parameters(), lr=lr) - - test_X, test_Y = get_testset() - - for step in range(num_steps): - batch_examples = [get_single_example() for i in range(batch_size)] - - batch_X = torch.tensor([x[0] for x in batch_examples], - device=device - ).transpose(0, 1) - batch_Y = torch.tensor([x[1] for x in batch_examples], - device=device).transpose(0, 1) - - model.train() - model.zero_grad() - logits = model(batch_X) - loss = loss_function(logits.reshape(-1, 10), batch_Y.reshape(-1)) - loss.backward() - optimizer.step() - - if step % (num_steps//100) == 0 or step == num_steps - 1: - # Printing a summary of the current state of training every 1% of steps. - model.eval() - predicted_logits = model.forward(test_X).reshape(-1, 10) - test_acc = ( - torch.sum(torch.argmax(predicted_logits, dim=-1) == test_Y.reshape(-1)) - / test_Y.reshape(-1).shape[0]) - print('step', step, 'out of', num_steps) - print('loss train', float(loss)) - print('accuracy test', float(test_acc)) - print() - accs.append(test_acc) - print('\nTRAINING TIME:', time()-start_time) - model.eval() - return accs +def do_verbose_test(model, n_tokens, seqlen, max_count): + print('verbose test:') + x, y = get_single_example(n_tokens, seqlen, max_count) + x = torch.tensor([x]).transpose(0, 1) + print('in :', x.squeeze()) + print('expected out:', torch.tensor(y)) + print('model out :', torch.argmax(model(x), dim=2).squeeze()) + +def train_model(model, lr, num_steps, batch_size, n_tokens, seqlen, max_count, device='cpu'): + torch.autograd.set_detect_anomaly(True) + model.to(device) + + start_time = time() + accs = [] + + loss_function = nn.CrossEntropyLoss( + # weight=torch.log(2 + torch.tensor(range(max_count+1), dtype=torch.float)) + ) + optimizer = optim.Adam(model.parameters(), lr=lr) + + test_X, test_Y = get_testset(n_tokens, seqlen, max_count) + print('test size', test_X.shape) + + for step in range(num_steps): + batch_examples = [get_single_example(n_tokens, seqlen, max_count) for i in range(batch_size)] + + batch_X = torch.tensor([x[0] for x in batch_examples], + device=device + ).transpose(0, 1) + batch_Y = torch.tensor([x[1] for x in batch_examples], + device=device).transpose(0, 1) + + model.train() + model.zero_grad() + logits = model(batch_X) + loss = loss_function(logits.reshape(-1, max_count + 1), batch_Y.reshape(-1)) + loss.backward() + optimizer.step() + + if step % (num_steps//100) == 0 or step == num_steps - 1: + # Printing a summary of the current state of training every 1% of steps. + model.eval() + predicted_logits = model.forward(test_X).reshape(-1, max_count + 1) + test_acc = ( + torch.sum(torch.argmax(predicted_logits, dim=-1) == test_Y.reshape(-1)) + / test_Y.reshape(-1).shape[0]) + print('step', step, 'out of', num_steps) + print('loss train', float(loss)) + print('accuracy test', float(test_acc)) + do_verbose_test(model, n_tokens, seqlen, max_count) + print() + accs.append(test_acc) + print('\nTRAINING TIME:', time()-start_time) + model.eval() + return accs |