1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
import torch
from torch import nn
from util.util import get_positional_encoding
from model.encoder_layer import EncoderLayer
def log(string, verbose):
if verbose:
print(string)
class EncoderModel(nn.Module):
def __init__(self, input_dim, hidden_dim, d_ff, output_dim, n_layers,
num_heads, use_attention=True, use_feedforward=True,
use_positional=True, device='cpu'):
super(EncoderModel, self).__init__()
self._device = device
self._use_positional = use_positional
self.embedding_layer = nn.Embedding(input_dim, hidden_dim)
self.layers = nn.ModuleList([
EncoderLayer(
hidden_dim,
d_ff,
num_heads,
use_attention,
use_feedforward,
device=device
) for i in range(n_layers)
])
self.output_layer = nn.Linear(hidden_dim, output_dim)
def forward(self, x, return_att_weights=False, verbose=False):
log(f'Handling {x}', verbose)
# x shape: (seqlen, batch)
x = x.to(self._device)
hidden = self.embedding_layer(x)
# hidden shape: (seqlen, batch, hiddendim)
if self._use_positional:
positional_encoding = get_positional_encoding(
n_positions=hidden.shape[0],
n_dimensions=hidden.shape[-1],
device=self._device
)
# reshaping to (seqlen, 1, hiddendim)
positional_encoding = torch.reshape(
positional_encoding,
(hidden.shape[0], 1, hidden.shape[-1])
)
hidden = hidden + positional_encoding
list_att_weights = []
for layer in self.layers:
hidden, att_weights = layer(hidden)
list_att_weights.append(att_weights)
result = self.output_layer(hidden)
log('Result: {result}', verbose)
if return_att_weights:
return result, list_att_weights
else:
return result
|