blob: bb9e0c3cf9966ac82693ff96ec48fdc2b647aa92 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import torch
import numpy as np
positional_encoding = None
def get_positional_encoding(n_positions, n_dimensions, device='cpu'):
global positional_encoding
if positional_encoding is None:
# Number positions from 1 instead of 0, to avoid repeated values in
# first row of encoding
numerators = 1 + torch.tensor(range(n_positions)).repeat(n_dimensions, 1).T
denominators = 10000 ** (torch.tensor(range(n_dimensions)) // 2 * 2 / n_dimensions)
positional_encoding = numerators / denominators
positional_encoding[:, ::2] = torch.sin(positional_encoding[:, ::2])
positional_encoding[:, 1::2] = torch.cos(positional_encoding[:, 1::2])
# output shape: (seqlen, hiddendim)
return positional_encoding.to(device)
|