m-chrzan.xyz
aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMarcin Chrzanowski <mc370754@students.mimuw.edu.pl>2021-12-09 18:38:57 +0100
committerMarcin Chrzanowski <mc370754@students.mimuw.edu.pl>2021-12-09 18:38:57 +0100
commit09eb93e92a4e6ebc832dee93d462429f57208941 (patch)
tree913c4b326503c661b279e5e1dc54f78ff560e57e
parentf92048908c9d54dd1df528c47c5f6b4e00082e5e (diff)
Add a recap of the full algorithm
-rw-r--r--mgr.tex34
1 files changed, 34 insertions, 0 deletions
diff --git a/mgr.tex b/mgr.tex
index 3ad657e..a9d75cb 100644
--- a/mgr.tex
+++ b/mgr.tex
@@ -1073,6 +1073,40 @@ part takes constant time, and there are $O(m)$ parts to handle. We did require
$O(m \log m)$ time to sort the vertices mentioned in the question when computing
their LCA closure, thus question answering takes time $O(m \log m)$.
+\section{The full algorithm}
+
+As a recap we summarize all the steps of the full MSO query answering algorithm.
+
+\textbf{preprocessing} Take an MSO formula $\varphi(X_1, \ldots, X_k)$ and a
+$\Sigma$ labeled tree $T$.
+
+\begin{enumerate}
+ \item Transform $\varphi$ and $T$ into a deterministic bottom-up automaton
+ $A$ and binary tree $T'$.
+ \item Preprocess $T'$ for computing LCA closures:
+ \begin{enumerate}
+ \item Preprocess $T'$ for LCA questions;
+ \item Store each vertex's in-order number.
+ \end{enumerate}
+ \item For each pair of $A$'s states, $q$ and $q'$, preprocess $T'$ for
+ branch infix regular questions about the language $L_{q, q'}^R$.
+\end{enumerate}
+
+\textbf{answering questions} We receive the question ``for a a tuple of sets of
+$T$'s vertices, $\vec{W}$, does $T \models \varphi(\vec{W})$?''
+
+\begin{enumerate}
+ \item From the selection of $\vec{W}$, generate a relabeling of $T'$'s
+ vertices that labels vertices mentioned in $\vec{W}$ as being assigned
+ to the appropriate variables in $\vec{X}$. Let $W$ be this set of
+ relabeled vertices.
+ \item Compute $W'$, the smallest partition ready set containing $W$.
+ \item Compute the LCA parition of $T'$ with respect to $W'$.
+ \item In a bottom-up fashion, compute the state of $A$ running over the
+ relabeled tree in the roots of each part of the LCA partition.
+ \item Return YES if the state of $T$'s root is accepting, NO otherwise.
+\end{enumerate}
+
\printbibliography
\end{document}